Affiliation:
1. Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot 76100, Israel
2. Department of Cell Research and Immunology, Tel Aviv University, Ramat-Aviv 69978, Israel
Abstract
Glucosylceramide, a degradation product of complex glycosphingolipids, is hydrolysed in lysosomes by glucocerebrosidase (GlcCerase). Mutations in the human GlcCerase gene cause a reduction in GlcCerase activity and accumulation of glucosylceramide, which results in the onset of Gaucher disease, the most common lysosomal storage disease. Significant clinical heterogeneity is observed in Gaucher disease, with three main types known, but no clear correlation has been reported between the different types and levels of residual GlcCerase activity. We now demonstrate that a correlation exists by using a radioactive, short-acyl chain substrate, N-(1-[14C]hexanoyl)-D-erythro-glucosylsphingosine ([14C]hexanoyl-GlcCer). This substrate rapidly transferred into biological membranes in the absence of detergent [Futerman and Pagano (1991) Biochem. J. 280, 295-302] and was hydrolyzed to N-(1-[14C]hexanoyl)-D-erythro-sphingosine ([14C]hexanoyl-Cer) both in vitro and in situ, with an acid pH optimum. A strict correlation was observed between levels of [14C]hexanoyl-GlcCer hydrolysis and Gaucher type in human skin fibroblasts. The mean residual activity measured in vitro for 3 h incubation in type 1 Gaucher fibroblasts (the mild form of the disease) was 46.3 +/- 4.6 nmol of [14C]hexanoyl-Cer formed per mg protein (n = 9), and in type 2 and 3 fibroblasts (the neuronopathic forms of the disease) was 19.6 +/- 6.5 (n = 9). A similar correlation was observed when activity was measured in situ, suggesting that the clinical severity of a lysosomal storage disease is related to levels of residual enzyme activity.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献