4-Aminobutyrate in mammalian putrescine catabolism

Author:

Seiler N.1,Eichentopf B.1

Affiliation:

1. Max-Planck-Institut für Hirnforschung, Arbeitsgruppe Neurochemie, Frankfurt/Main, West Germany

Abstract

The effects of inhibitors of diamine oxidase (EC 1.4.3.6), monoamine oxidase (EC 1.4.3.4) and 4-aminobutyrate aminotransferase (EC 2.6.1.19) on the catabolism of putrescine in mice in vivo were studied. Diamine oxidase inhibitors and carboxymethoxylamine (amino-oxyacetate) markedly inhibit the metabolism of [14C]putrescine to 14CO2, but affect different enzymes. Aminoguanidine specifically inhibits the mitochondrial and non-mitochondrial diamine oxidases, whereas carboxymethoxylamine specifically inhibits 4-aminobutyrate transamination by the mitochondrial pathway. Hydrazine inhibits at both sites, and results in increased concentrations of 4-aminobutyrate in brain and liver. Pretreatment of mice with carboxymethoxylamine and [14C]putrescine leads to the urinary excretion of amino[14C]butyrate. Carboxymethoxylamine does not affect the non-mitochondrial pathway of putrescine catabolism, as the product of oxidative deamination of putrescine in the extramitochondrial compartment is not further oxidized but is excreted in the urine as derivatives of 4-aminobutyraldehyde. Another catabolic pathway of putrescine involves monoamine oxidase, and the monoamine oxidase inhibitor, pargyline, decreases the metabolism of [14C]putrescine to 14CO2in vivo. Catabolism of putrescine to CO2in vivo occurs along different pathways, both of which have 4-aminobutyrate as a common intermediate, in contrast with the non-mitochondrial catabolism of putrescine, which terminates in the excretion of 4-aminobutyraldehyde derivatives. The significance of the different pathways is discussed.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3