Structure and biological activity of finback-whale (Balaenoptera physalus L.) heparin octasaccharide. Chemical, carbon-13 nuclear-magnetic-resonance, enzymic and biological studies

Author:

Ototani N,Kikuchi M,Yosizawa Z

Abstract

Finback-whale (Balaenoptera physalus L.) heparin was partially digested with a purified heparinase and an octasaccharide with high affinity for antithrombin III was isolated from the digest by gel filtration, followed by affinity chromatography on a column of antithrombin III immobilized on Sepharose 4B. This octasaccharide possessed high inhibitory activity for Factor Xa in the presence of antithrombin III, but was essentially inactive for thrombin-antithrombin III reaction. The anticoagulant activity determined by the activated-partial-thromboplastin-time method was very low (40-70 units/mg), although the initial whale heparin exhibited high activity (252 units/mg). On the basis of the results of chemical analyses, 13C n.m.r. spectrum and enzymic studies with purified heparinase, heparitinases 1 and 2, the predominant structure of the octasaccharide was proposed as follows: delta UA(2S) alpha 1 leads to 4GlcNS alpha 1 leads to 4IdUA alpha 1 leads to 4GlcNAc(6S) alpha 1 leads to 4GlcUA beta 1 leads to 4GlcNS(3S) alpha 1 leads to 4IdUA(2S) alpha 1 leads to 4GlcNS. Comparing this structure with those of the heparin octasaccharides so far reported, the presence of the critical structural elements for binding to antithrombin III was suggested in the pentasaccharide region situated at the reducing end of this octasaccharide. Binding to antithrombin III of the critical structural elements alone would appear to elicit the acceleration of the Factor Xa-antithrombin III reaction. Additional structural elements required for the acceleration of the thrombin-antithrombin III reaction and for the manifestation of high anticoagulant activity are discussed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3