Is pyridoxal 5′-phosphate an affinity label for phosphate-binding sites in proteins?: The case of bovine glutamate dehydrogenase

Author:

Valinger Z1,Engel P C1,Metzler D E2

Affiliation:

1. Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, P.O. Box 594, Firth Court, Western Bank, Sheffield S10 2UH, U.K.

2. Biochemistry and Biophysics Department, Iowa State University, Ames, IA 50011, U.S.A.

Abstract

The effects of pyridoxal 5′-phosphate (PalP) on ox liver glutamate dehydrogenase (94% inactivation by 1.8 mM reagent at pH 7 and 25 degrees C) have been compared with those of three analogues, 5′-deoxypyridoxal (96% inactivation), pyridoxal 5′-sulphate (97%) and pyridoxal 5-methylsulphonate (94%), in order to establish whether PalP acts as an affinity label for this enzyme. Like PalP and unlike pyridoxal, which is a much less potent inactivator, none of the analogues has a free 5′-OH group to cyclize with the aldehyde function. The result with 5′-deoxypyridoxal shows that a negative charge, such as that of the phosphate group, is not required for efficient inactivation. With all four reagents, addition of an excess of cysteine or lysine led to 90-100% re-activation over 3-20 h. Dialysis also caused reactivation to a similar extent. A combination of 2.15 mM NADH, 1 mM GTP and 10 mM 2-oxoglutarate gave complete protection against PalP, but only partial protection against the analogues. 5′-Deoxypyridoxal still caused 20-25% inactivation in the presence of the protection mixture. Absorbance measurements after reduction with NaBH4 show the characteristic features of a reduced Schiff's base and allowed estimation of the extent of reaction. With all the reagents the protection mixture decreased incorporation by about 1 mol/mol, but levels of incorporation without protection varied from about 2 mol/mol for PalP up to about 5 mol/mol for 5′-deoxypyridoxal. The labelling at additional sites may explain the residual inactivation in the presence of potent protecting agents.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3