Mammalian cell polyamine homeostasis is altered by the radioprotector WR1065

Author:

MITCHELL John L. A.1,RUPERT Jennifer1,LEYSER Aviva1,JUDD Gary G.1

Affiliation:

1. Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, U.S.A.

Abstract

Mammalian cells become more susceptible to radiation-induced death and mutagenesis when restricted in their production of the natural polyamines putrescine, spermidine and spermine. The effects of polyamine deprivation are reversed by N-(2-mercaptoethyl)-1,3-diaminopropane (WR1065), a simple aminothiol that has been extensively studied for its radioprotectant properties. Because this compound and its oxidized derivative WR33278 bear some resemblance to the polyamines, it was hypothesized that radioprotection by WR1065 or its metabolites is derived, at least in part, from their ability to supplement the natural polyamines. To evaluate the ability of these aminothiol compounds to emulate polyamine function in intact cells, rat liver hepatoma (HTC) cells were treated with radioprotective doses of WR1065; the ability of this compound to affect various aspects of normal polyamine metabolism was monitored. Although cellular WR1065 was maintained at levels exceeding those of the polyamines, this aminothiol did not have any polyamine-like effect on the initial polyamine biosynthetic enzyme, ornithine decarboxylase, or on polyamine degradative reactions. On the contrary, treatment with relatively low levels of WR1065 resulted in an unexpected increase in putrescine and spermidine synthesis. WR1065 treatment enhanced the stability, and consequently the activity, of ornithine decarboxylase. This stabilization seems to result from a WR1065-induced delay in the synthesis of antizyme, a critical regulatory protein required in the feedback modulation of polyamine synthesis and transport. The increase in cellular spermidine induced by WR1065 might explain its antimutagenic properties, but is probably not a factor in protection against cell killing by radiation. This is the first evidence that compounds can be designed to control polyamine levels by targeting the activity of the regulatory protein antizyme.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3