Apoptosis-like programmed cell death in the grey mould fungus Botrytis cinerea: genes and their role in pathogenicity

Author:

Shlezinger Neta1,Doron Adi1,Sharon Amir1

Affiliation:

1. Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel

Abstract

A considerable number of fungal homologues of human apoptotic genes have been identified in recent years. Nevertheless, we are far from being able to connect the different pieces and construct a primary structure of the fungal apoptotic regulatory network. To get a better picture of the available fungal components, we generated an automatic search protocol that is based on protein sequences together with a domain-centred approach. We used this protocol to search all the available fungal databases for domains and homologues of human apoptotic proteins. Among all known apoptotic domains, only the BIR [baculovirus IAP (inhibitor of apoptosis protein) repeat] domain was found in fungi. A single protein with one or two BIR domains is present in most (but not all) fungal species. We isolated the BIR-containing protein from the grey mould fungus Botrytis cinerea and determined its role in apoptosis and pathogenicity. We also isolated and analysed BcNMA, a homologue of the yeast NMA11 gene. Partial knockout or overexpression strains of BcBIR1 confirmed that BcBir1 is anti-apoptotic and this activity was assigned to the N′-terminal part of the protein. Plant infection assays showed that the fungus undergoes massive PCD (programmed cell death) during early stages of infection. Further studies showed that fungal virulence was fully correlated with the ability of the fungus to cope with plant-induced PCD. Together, our result show that BcBir1 is a major regulator of PCD in B. cinerea and that proper regulation of the host-induced PCD is essential for pathogenesis in this and other similar fungal pathogens.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3