Two calcium-binding sites mediate the interconversion of liver inositol 1,4,5-trisphosphate receptors between three conformational states

Author:

Marshall I C1,Taylor C W1

Affiliation:

1. Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, U.K.

Abstract

Cytosolic Ca2+ biphasically regulates Ins(1,4,5)P3-stimulated Ca2+ mobilization in liver [Marshall and Taylor (1993) J. Biol. Chem. 268, 13214-13220]. We have investigated the mechanisms underlying this biphasic control of Ca2+ mobilization in permeabilized hepatocytes by comparing the effects of Sr2+, Ba2+ and Ca2+ on the liver Ins(1,4,5)P3 receptor. Both Ca2+ and Sr2+ increased the binding of [3H]Ins(1,4,5)P3 to liver membranes by converting receptors from a low-affinity (KD approximately 35 nM) to a high-affinity (KD approximately 5 nM) state. Ba2+ (< or = 20 microM) did not affect [3H]Ins(1,4,5)P3 binding. At concentrations similar to those that caused an enhancement of [3H]Ins(1,4,5)P3 binding, Sr2+ (EC50 = 570 nM) and Ca2+ (EC50 = 200 nM) increased the sensitivity of the intracellular Ca2+ stores to Ins(1,4,5)P3. Further modest elevations in [Ca2+] (EC50 = 1.5 microM) inhibited Ins(1,4,5)P3-stimulated Ca2+ mobilization, whereas Sr2+ caused inhibition only when its concentration was very substantially increased (EC50 approximately 900 microM). Sr2+ is therefore only 3-fold less potent than Ca2+ in causing sensitization of Ins(1,4,5)P3-stimulated Ca2+ release, but 600-fold less potent in causing inhibition. Ba2+ neither sensitized ([Ba2+] < or = 20 microM) nor inhibited ([Ba2+] < or = 1 mM) Ins(1,4,5)P3-stimulated Ca2+ release, and did not inhibit either the sensitization of Ca2+ release evoked by Sr2+ or the inhibition of Ca2+ release evoked by Ca2+. Our results suggest that two distinct Ca(2+)-binding sites, which differ in their selectivities for bivalent cations, mediate the interconversion of Ins(1,4,5)P3 receptors between at least three different conformational states. These two Ca(2+)-binding sites, which may reside either on the Ins(1,4,5)P3 receptor itself or on distinct regulatory proteins, can be distinguished by their different selectivities for bivalent cations.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3