Affiliation:
1. Department of Biochemistry, Mount Sinai School of Medicine, New York, NY 10029, U.S.A.
Abstract
Glycerol can be oxidized to formaldehyde by microsomes in a reaction that is dependent on cytochrome P-450. An oxidant derived from the interaction of H2O2 with iron was responsible for oxidizing the glycerol, with P-450 suggested to be necessary to produce H2O2 and reduce non-haem iron. The effect of paraquat on formaldehyde production from glycerol and whether paraquat could replace P-450 in supporting this reaction were studied. Paraquat increased NADPH-dependent microsomal oxidation of glycerol; the stimulation was inhibited by glutathione, catalase, EDTA and desferrioxamine, but not by superoxide dismutase or hydroxyl-radical scavengers. The paraquat stimulation was also inhibited by inhibitors, substrate and ligand for P-4502E1 (pyrazole-induced P-450 isozyme), as well as by anti-(P-4502E1) IgG. These results suggest that P-450 still played an important role in glycerol oxidation, even in the presence of paraquat. Purified NADPH-cytochrome P-450 reductase did not oxidize glycerol to formaldehyde; some oxidation, however, did occur in the presence of paraquat. Reductase plus P-4502E1 oxidized glycerol, and a large stimulation was observed in the presence of paraquat. Rates in the presence of P-450, reductase and paraquat were more than additive than the sums from the reductase plus P-450 and reductase plus paraquat rates, suggesting synergistic interactions between paraquat and P-450. These results indicate that paraquat increases oxidation of glycerol to formaldehyde by microsomes and reconstituted systems, that H2O2 and iron play a role in the overall reaction, and that paraquat can substitute, in part, for P-450 in supporting oxidation of glycerol. However, cytochrome P-450 is required for elevated rates of formaldehyde production even in the presence of paraquat.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献