Dissecting structure–function–stability relationships of a thermostable GH5-CBM3 cellulase from Bacillus subtilis 168

Author:

Santos Camila R.1,Paiva Joice H.1,Sforça Maurício L.1,Neves Jorge L.1,Navarro Rodrigo Z.1,Cota Júnio2,Akao Patrícia K.1,Hoffmam Zaira B.2,Meza Andréia N.1,Smetana Juliana H.1,Nogueira Maria L.1,Polikarpov Igor3,Xavier-Neto José1,Squina Fábio M.2,Ward Richard J.4,Ruller Roberto2,Zeri Ana C.1,Murakami Mário T.1

Affiliation:

1. Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas SP, Brazil

2. Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas SP, Brazil

3. Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil

4. Departamento de Química, Universidade de São Paulo, Ribeirão Preto, Brazil

Abstract

Cellulases participate in a number of biological events, such as plant cell wall remodelling, nematode parasitism and microbial carbon uptake. Their ability to depolymerize crystalline cellulose is of great biotechnological interest for environmentally compatible production of fuels from lignocellulosic biomass. However, industrial use of cellulases is somewhat limited by both their low catalytic efficiency and stability. In the present study, we conducted a detailed functional and structural characterization of the thermostable BsCel5A (Bacillus subtilis cellulase 5A), which consists of a GH5 (glycoside hydrolase 5) catalytic domain fused to a CBM3 (family 3 carbohydrate-binding module). NMR structural analysis revealed that the Bacillus CBM3 represents a new subfamily, which lacks the classical calcium-binding motif, and variations in NMR frequencies in the presence of cellopentaose showed the importance of polar residues in the carbohydrate interaction. Together with the catalytic domain, the CBM3 forms a large planar surface for cellulose recognition, which conducts the substrate in a proper conformation to the active site and increases enzymatic efficiency. Notably, the manganese ion was demonstrated to have a hyper-stabilizing effect on BsCel5A, and by using deletion constructs and X-ray crystallography we determined that this effect maps to a negatively charged motif located at the opposite face of the catalytic site.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference66 articles.

1. Ethanol can contribute to energy and environmental goals;Farrell;Science,2006

2. How biotech can transform biofuels;Lynd;Nat. Biotechnol.,2008

3. Fermentable sugars by chemical hydrolysis of biomass;Binder;Proc. Natl. Acad. Sci. U.S.A.,2010

4. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield;Shaw;Proc. Natl. Acad. Sci. U.S.A.,2008

5. New improvements for lignocellulosic ethanol;Margeot;Curr. Opin. Biotechnol.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3