Characterization of the dehydratase WcbK and the reductase WcaG involved in GDP-6-deoxy-manno-heptose biosynthesis in Campylobacter jejuni

Author:

McCallum Matthew1,Shaw Gary S.2,Creuzenet Carole1

Affiliation:

1. Department of Microbiology and Immunology, Infectious Diseases Research Group, University of Western Ontario, London, ON, Canada, N6A 5C1

2. Department of Biochemistry, University of Western Ontario, London, ON, Canada, N6A 5C1

Abstract

The capsule of Campylobacter jejuni strain 81-176 comprises the unusual 6-deoxy-α-D-altro-heptose, whose biosynthesis and function are not known. In the present study, we characterized enzymes of the capsular cluster, WcbK and WcaG, to determine their role in 6-deoxy-altro-heptose synthesis. These enzymes are similar to the Yersinia pseudotuberculosis GDP-manno-heptose dehydratase/reductase DmhA/DmhB that we characterized previously. Capillary electrophoresis and MS analyses showed that WcbK is a GDP-manno-heptose dehydratase whose product can be reduced by WcaG, and that WcbK/WcaG can use the substrate GDP-mannose, although with lower efficiency than heptose. Comparison of kinetic parameters for WcbK and DmhA indicated that the relaxed substrate specificity of WcbK comes at the expense of catalytic performance on GDP-manno-heptose. Moreover, although WcbK/WcaG and DmhA/DmhB are involved in altro- versus manno-heptose synthesis respectively, the enzymes can be used interchangeably in mixed reactions. NMR spectroscopy analyses indicated conservation of the sugar manno configuration during catalysis by WcbK/WcaG. Therefore additional capsular enzymes may perform the C3 epimerization necessary to generate 6-deoxy-altro-heptose. Finally, a conserved residue (Thr187 in WcbK) potentially involved in substrate specificity was identified by structural modelling of mannose and heptose dehydratases. Site-directed mutagenesis and kinetic analyses demonstrated its importance for enzymatic activity on heptose and mannose substrates.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3