In vitro synthesis of a crystalline (1 3,1 4)-beta-d-glucan by a mutated (1 3,1 4)-beta-d-glucanase from Bacillus

Author:

FAIJES Magda1,IMAI Tomoya2,BULONE Vincent2,PLANAS Antoni1

Affiliation:

1. Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain

2. Centre de Recherches sur les Macromolécules Végétales (CERMAV-UPR CNRS 5301), affiliated with the Joseph Fourier University of Grenoble, B.P. 53, 38041 Grenoble cedex 9, France

Abstract

Oligo- and poly-saccharides have a large number of important biological functions, and they occur in natural composite materials, such as plant cell walls, where they self-assemble during biosynthesis in a poorly understood manner. They can also be used for the formation of artificial composite materials with industrial applications. Fundamental and applied research in biology and nanobiotechnology would benefit from the possibility of synthesizing tailor-made oligo-/poly-saccharides. In the present paper, we demonstrate that such syntheses are possible using genetically modified glycoside hydrolases, i.e. glycosynthases. The ability of the endoglycosynthase derived from Bacillus (1→3,1→4)-β-d-glucanase to catalyse self-condensation of sugar donors was exploited for the in vitro synthesis of a regular polysaccharide. The specificity of the enzyme allowed the polymerization of α-laminaribiosyl fluoride via the formation of (1→4)-β-linkages to yield a new linear crystalline (1→3,1→4)-β-d-glucan with a repeating 4βG3βG unit. MS and methylation analyses indicated that the in vitro product consisted of a mixture of oligosaccharides, the one having a degree of polymerization of 12 being the most abundant. Morphological characterization revealed that the (1→3,1→4)-β-d-glucan forms spherulites which are composed of platelet crystals. X-ray and electron diffraction analyses allowed the proposition of a putative crystallographic structure which corresponds to a monoclinic unit cell with a=0.834 nm, b=0.825 nm, c=2.04 nm and γ=90.5°. The dimensions of the ab plane are similar to those of cellulose Iβ, but the length of the c-axis is nearly twice that of cellulose I. It is proposed that four glucose residues are present in an extended conformation along the c-axis of the unit cell. The data presented show that glycosynthases represent promising enzymic systems for the synthesis of novel polysaccharides with specific and controlled structures, and for the analysis in vitro of the mechanisms of polymerization and crystallization of polysaccharides.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3