Inhibition of muscle glutamine formation in hypercatabolic patients

Author:

BIOLO Gianni1,FLEMING R. Y. Declan1,MAGGI Sergio P.1,NGUYEN Thuan T.1,HERNDON David N.1,WOLFE Robert R.

Affiliation:

1. Shriners Burns Hospital and University of Texas Medical Branch, 815 Market St, Galveston, TX 77550, U.S.A.

Abstract

Glutamine is synthesized primarily in skeletal muscle, and enables transfer of nitrogen to the liver, as well as serving other functions. There is increasing evidence for beneficial clinical effects of glutamine supplementation in critically ill patients. However, the response of endogenous glutamine formation to severe stress is poorly understood. The rates of net protein balance, leucine oxidative decarboxylation, and alanine and glutamine synthesis de novo were determined in leg skeletal muscle of 20 severely burned patients and 19 normal controls in the post-absorptive state. Patients were studied at 14±5 days post-burn, and their mean burn size was 66±18% of total body surface area. Methods were based on the leg arteriovenous balance technique in combination with biopsies of the vastus lateralis muscle. In the post-absorptive state, patients with severe burns, as compared with healthy control subjects, exhibited accelerated muscle loss (+150%) (i.e. proteolysis minus synthesis) and leucine oxidative decarboxylation (+117%), and depletion of the intramuscular free glutamine pool (-63%). The average rate of glutamine synthesis de novo was decreased by 48%, whereas net alanine synthesis de novo was increased by 174%, in skeletal muscle of burned patients. In conclusion, in severely hypercatabolic burned patients, muscle glutamine formation was suppressed, whereas alanine was the major vehicle for inter-organ nitrogen transport. These changes account for a decreased glutamine availability during prolonged severe stress.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3