Burn injury upregulates the activity and gene expression of the 20 S proteasome in rat skeletal muscle

Author:

FANG Cheng-Hui1,LI Bing-Guo1,FISCHER David R.2,WANG Jing Jing2,RUNNELS Herbert A.3,MONACO John J.3,HASSELGREN Per-Olof2

Affiliation:

1. The Shriners Hospital for Children, 3229 Burnet Avenue, Cincinnati, OH 45229, U.S.A.

2. Department of Surgery, University of Cincinnati, 231 Bethesda Avenue, Cincinnati, OH 45267-0558, U.S.A.

3. Department of Molecular Genetics, Biochemistry and Microbiology, Howard Hughes Medical Institute, University of Cincinnati, 231 Bethesda Avenue, Cincinnati, OH 45267-0558, U.S.A.

Abstract

There is evidence that burn injury stimulates ubiquitin–proteasome-dependent protein breakdown in skeletal muscle. In this proteolytic pathway, protein substrates are conjugated to multiple molecules of ubiquitin, whereafter they are recognized, unfolded and degraded by the multicatalytic 26 S protease complex. The 20 S proteasome is the catalytic core of the 26 S protease complex. The influence of burn injury on the expression and activity of the 20 S proteasome has not been reported. We tested the hypothesis that burn injury increases 20 S proteasome activity and the expression of mRNA for the 20 S proteasome subunits RC3 and RC7. Proteolytic activity of isolated 20 S proteasomes, assessed as activity against fluorogenic peptide substrates, was increased in extensor digitorum longus muscles from burned rats. Northern-blot analysis revealed that the expression of mRNA for RC3 and RC7 was increased by 100% and 80% respectively following burn injury. Increased activity and expression of the 20 S proteasome in muscles from burned rats support the concept that burn-induced muscle cachexia is at least, in part, regulated by the ubiquitin–proteasome proteolytic pathway.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3