Activation of NADPH oxidase of human neutrophils involves the phosphorylation and the translocation of cytosolic p67phox

Author:

Dusi S1,Rossi F1

Affiliation:

1. Instituto di Patologia Generale, Università degli Studi di Verona, Strada Le Grazie 4, 37134 Verona, Italy

Abstract

Activation of human neutrophil NADPH oxidase requires the interaction of cytosolic and membrane-associated components. Evidence has been accumulated that in phorbol 12-myristate 13-acetate (PMA)-stimulated neutrophils, the translocation to the plasma membrane of the cytosolic components p47phox and p67phox and the phosphorylation of p47phox are essential steps in activation of NADPH oxidase. No direct evidence has been presented to date as to whether p67phox is also phosphorylated. To address this problem we have immunoprecipitated p67phox from neutrophil cytosol and membrane fractions. The results indicate that, very soon after activation with PMA (20 s), p67phox was present in a phosphorylated form in the cytosol and in the membranes. At later times (1-3 min) the extent of p67phox phosphorylation continuously increased both in the cytosol and in the membrane fraction, while oxygen consumption reached the maximal rate within 40 s, and then remained linear. p67phox was also phosphorylated in formyl-methionyl-leucyl-phenylalanine-activated neutrophils. That the phosphorylated p67 protein we identified in immunoprecipitation experiments was p67phox was confirmed by the observation that no phosphorylated band of 67 kDa was immunoprecipitated from the cytosol and membranes of PMA-stimulated neutrophils from a p67phox-deficient chronic granulomatous disease patient. In this case, p47phox was normally phosphorylated. These data demonstrate that: (1) the phosphorylation of p67phox is correlated with activation of NADPH oxidase, and (2) continuous phosphorylation of p67phox is required in order to maintain the linearity of the respiratory burst.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3