Cardiolipin prevents rate-dependent uncoupling and provides osmotic stability in yeast mitochondria

Author:

KOSHKIN Vasilij1,GREENBERG Miriam L.1

Affiliation:

1. Department of Biological Sciences, Wayne State University, Detroit, MI 48202, U.S.A.

Abstract

The role of cardiolipin in mitochondrial function was studied by comparing the energy-transforming and osmotic properties of mitochondria isolated from the Saccharomyces cerevisiae cardiolipin synthase-null mutant crd1Δ, which has no cardiolipin, and the isogenic wild type. The results indicated that the importance of cardiolipin for energetic coupling strongly depends on the rate of oxidative phosphorylation, which was set by using NADH (maximal rate limited by coupling mechanism) or ethanol (moderate rate limited by electron supply) as a respiratory substrate, or by modulating the steady-state rate of NADH supply. The absence of cardiolipin resulted in only a small effect on oxidative phosphorylation proceeding at a moderate rate, but led to significant uncoupling (decreased ADP/O and increased state 4 respiration) at the maximal rate of respiration. This indicates that cardiolipin prevents rate-dependent uncoupling in the energy-transforming apparatus. This role of cardiolipin may derive from its strong interaction with, and modulation of the function of, respiratory complexes, and from its effects on the physical properties of the membrane. The importance of cardiolipin for mitochondrial osmotic properties was determined by comparing oxidative phosphorylation, release of matrix enzyme, shrinking ability and volume dynamics upon hypotonically induced swelling in crd1Δ and wild-type mitochondria. Opening of the yeast mitochondrial unspecific channel (YMUC) in the wild-type and mutant mitochondria was also tested. It was found that the lack of cardiolipin strongly undermines the osmotic stability of the mitochondrial membrane.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3