Stimulatory antibody-induced activation and selective translocation of protein kinase C isoenzymes in human platelets

Author:

Wang F1,Naik U P1,Ehrlich Y H2,Osada S3,Ohno S3,Kornecki E1

Affiliation:

1. *Department of Anatomy and Cell Biology, State University of New York, Health Science Center at Brooklyn, Brooklyn, NY 11203, U.S.A.

2. ‡CSI/IBR Center for Developmental Neuroscience, College of Staten Island, City University of New York, Staten Island, NY 10301, U.S.A

3. †Deparment of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236, Japan

Abstract

A novel stimulatory monoclonal antibody (Mab) termed Mab.F11 induces granular secretion and subsequent aggregation of human platelets. Mab.F11 recognizes a unique 32 and 35 kDa protein duplex on the platelet membrane surface, called the F11 receptor; binding of Mab.F11 to its receptor results in increased intracellular phosphorylation of P47, the known protein kinase C (PKC) substrate pleckstrin. In order to determine whether the mechanism of action of Mab.F11 involves direct activation of PKC, two types of functional assays for measuring PKC activity were performed. Measurement of PKC activity in digitonin-permeabilized platelets revealed that Mab.F11 produced a rapid, 2-3 fold increase in the control value in the phosphorylation of the PKC peptide substrate, PKC(19-31) Ser25. The increase in PKC activity induced by Mab.F11 was found to be associated with the platelet membrane; a 1.6-fold control value increase in membrane PKC activity occurred rapidly, within 10 s of the addition of Mab.F11. The translocation from the cytoplasm to the membrane induced by Mab.F11 in PKC isoenzymes alpha and zeta was reversible, whereas translocation of the PKC isoenzymes delta, beta, eta' and theta was irreversible, with PKC levels remaining elevated in the membrane for at least 15 min. Taken together, our results demonstrate that in the initial stages of platelet activation by this stimulatory antibody, the enhanced membrane PKC activity reflects the presence of all six isoenzymes. At later stages, PKC activity is reflective of four isoenzymes. These results demonstrate that separate groups of PKC isoenzymes must be involved in different aspects of platelet activation. The long lag period and prolonged activation time of platelets by Mab.F11 renders this agonist most suitable for identifying the isoenzymes and their specific endogenous protein substrates involved in platelet secretion and aggregation induced by platelet membrane protein antibodies.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3