Affiliation:
1. Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
2. Laboratory of Proteome Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
Abstract
The non-receptor-type tyrosine kinase c-Abl functions as a cytoplasmic signal transducer upon activation of cell-surface receptors. c-Abl is also involved in DDR (DNA-damage response), which is initiated in the nucleus, whereas its molecular functions in DDR are not fully understood. In the present study, we found that c-Abl phosphorylates JunB, a member of the AP-1 (activator protein 1) transcription factor family. Because JunB was suggested to be involved in DDR, we analysed the role of c-Abl-mediated phosphorylation of JunB in DDR. We first analysed phosphorylation sites of JunB and found that c-Abl majorly phosphorylates JunB at Tyr173, Tyr182 and Tyr188. Because c-Abl promotes expression of the cyclin-dependent kinase inhibitor p21 upon stimulation with the DNA-damaging agent Adriamycin (doxorubicin), we analysed the involvement of JunB in Adriamycin-induced p21 expression. We found that JunB suppresses p21 induction through inhibition of its promoter activity. The phosphomimetic JunB, which was generated by glutamic acid substitutions at the phosphorylation sites, failed to repress p21 induction. Recruitment of JunB to the p21 promoter was promoted by Adriamycin stimulation and was further enhanced by co-treatment with the c-Abl inhibitor imatinib. The phosphomimetic glutamic acid substitutions in JunB or Adriamycin treatment impaired the JunB–c-Fos transcription factor complex formation. Taken together, these results suggest that, although JunB represses p21 promoter activity, c-Abl phosphorylates JunB and conversely inhibits its suppressive role on p21 promoter activity upon Adriamycin stimulation. Therefore JunB is likely to be a key target of c-Abl in expression of p21 in Adriamycin-induced DDR.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献