Affiliation:
1. The Biological Laboratory, University of Kent, Canterbury, Kent CT2 7NJ, U.K.
Abstract
1. The cDNA coding for preprochymosin has been sub-cloned into the transcription/translation vector pGEM-3Z, the T7 promoter used to transcribe the gene and the product expressed in an ‘in vitro’ cell-free system comprising rabbit reticulocyte lysate and dog pancreatic microsomes. 2. Translations in various conditions, and analyses of the translation product in reducing and non-reducing conditions, indicate that oxidizing translation conditions and the cleavage of the N-terminal ‘pre-’ sequence are essential for generation of a disulphide-bonded translation product. 3. The disulphide-bonded translation product was resistant to proteinases, as expected for a translation product segregated within microsomal vesicles; in the presence of detergent to solubilize the membranes, the product was not readily susceptible to proteolysis, and was converted to a proteinase-resistant core fragment. 4. Segregated prochymosin, synthesized in reducing conditions, was completely degraded by proteinases under similar conditions. 5. Proteinase treatment of purified recombinant prochymosin gave rise to a proteinase-resistant fragment of similar Mr, suggesting that the disulphide-bonded product of translation in vitro was correctly folded. 6. The translocated, disulphide-bonded and folded prochymosin could be converted into pseudochymosin at pH 2.0, and addition of chymosin to the activation mixture resulted in increased pseudochymosin production.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献