Wnt10b promotes hair follicles growth and dermal papilla cells proliferation via Wnt/β-Catenin signaling pathway in Rex rabbits

Author:

Wu Zhenyu1,Zhu Yanli123,Liu Hongli1,Liu Gongyan1,Li Fuchang12ORCID

Affiliation:

1. College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China

2. Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China

3. Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China

Abstract

Abstract Wnt signaling plays an important role in the growth and development of hair follicles (HFs). Among the signaling molecules, Wnt10b was shown to promote the differentiation of primary skin epithelial cells toward the hair shaft and inner root sheath of the HF cells in mice in vitro. Whisker HFs were isolated from Rex rabbits and cultured in vitro to measure hair shaft growth. Meanwhile, dermal papilla cells (DPCs) were isolated and cultured in vitro. Treatment with AdWnt10b or the Wnt/β-Catenin Pathway inhibitor, XAV939, assessed the DPCs proliferation by CCK-8 assay. And the cell cycle was also analyzed by flow cytometry. We found that Wnt10b could promote elongation of the hair shaft, whereas XAV-939 treatment could eliminated this phenomenon. AdWnt10b treatment promoted the proliferation and induced G1/S transition of DPCs. AdWnt10b stimulation up-regulated β-Catenin protein in DPCs. Inhibition of Wnt/β-Catenin signaling by XAV-939 could decreased the basal and Wnt10b-enhanced proliferation of DPCs. And could also suppress the cell cycle progression in DPCs. In summary, our study demonstrates that Wnt10b could promote HFs growth and proliferation of DPCs via the Wnt/β-Catenin signaling pathway in Rex rabbits.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3