Tryptophan residues are targets in hypothiocyanous acid-mediated protein oxidation

Author:

Hawkins Clare L.1,Pattison David I.1,Stanley Naomi R.1,Davies Michael J.1

Affiliation:

1. The Heart Research Institute, 114 Pyrmont Bridge Road, Camperdown, Sydney, NSW 2050, Australia

Abstract

Myeloperoxidase, released by activated phagocytes, forms reactive oxidants by catalysing the reaction of halide and pseudo-halide ions with H2O2. These oxidants have been linked to tissue damage in a range of inflammatory diseases. With physiological levels of halide and pseudo-halide ions, similar amounts of HOCl (hypochlorous acid) and HOSCN (hypothiocyanous acid) are produced by myeloperoxidase. Although the importance of HOSCN in initiating cellular damage via thiol oxidation is becoming increasingly recognized, there are limited data on the reactions of HOSCN with other targets. In the present study, the products of the reaction of HOSCN with proteins has been studied. With albumin, thiols are oxidized preferentially forming unstable sulfenyl thiocyanate derivatives, as evidenced by the reversible incorporation of 14C from HOS14CN. On consumption of the HSA (human serum albumin) free thiol group, the formation of stable 14C-containing products and oxidation of tryptophan residues are observed. Oxidation of tryptophan residues is observed on reaction of HOSCN with other proteins (including myoglobin, lysozyme and trypsin inhibitor), but not free tryptophan, or tryptophan-containing peptides. Peptide mass mapping studies with HOSCN-treated myoglobin, showed the addition of two oxygen atoms on either Trp7 or Trp14 with equimolar or less oxidant, and the addition of a further two oxygen atoms to the other tryptophan with higher oxidant concentrations (≥2-fold). Tryptophan oxidation was observed on treating myoglobin with HOSCN in the presence of glutathione and ascorbate. Thus tryptophan residues are likely to be favourable targets for the reaction in biological systems, and the oxidation products formed may be useful biomarkers of HOSCN-mediated protein oxidation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference52 articles.

1. Mammalian heme peroxidases: from molecular mechanisms to health implications;Davies;Antiox. Redox Signaling,2008

2. Myeloperoxidase: a key regulator of neutrophil oxidant production;Kettle;Redox Rep.,1997

3. Thiocyanate is the major substrate for eosinophil peroxidase in physiological fluids: implications for cytotoxicity;Slungaard;J. Biol. Chem.,1991

4. Structure, functions and applications of lactoperoxidase in natural antimicrobial systems;de Wit;Nethl. Milk Dairy J.,1996

5. Thiocyanate and chloride as competing substrates for myeloperoxidase;van Dalen;Biochem. J.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3