Phosphinic peptide analogues as potent inhibitors of Corynebacterium rathayii bacterial collagenase

Author:

Yiotakis A1,Lecoq A2,Nicolaou A1,Labadie J3,Dive V2

Affiliation:

1. Department of Organic Chemistry, Laboratory of Organic Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece

2. Département d'lngénierie et d'Etudes des Protéines, D.S.V., C.E.A. CE-Saclay, 91191 Gif/Yvette, Cedex, France,

3. Station de Recherches sur la Viande, INRA de Theix, 63122, Ceyrat, France

Abstract

Pseudo-substrate analogues of collagenase from Corynebacterium rathayii, in which the scissile peptide bond is replaced by a phosphinic moiety, were synthesized and evaluated as inhibitors of this enzyme. The phosphinic tetrapeptide, Z-Phe-psi(PO2CH2)-Gly-Pro-Nle (1), was found to be a potent inhibitor of collagenase with a Ki value of 8 nM. Increasing the length of the phosphinic-containing inhibitors from tetra- to hepta-peptide size further improves the potency of these compounds. The heptapeptide analogue, Z-Phe-Gly-Pro-Phe-psi(PO2CH2)-Gly-Pro-Nle-OMe, with a Ki value of 0.6 nM, is the most potent inhibitor reported to date for bacterial collagenases. A comparison between the phosphinic analogue Z-Phe-psi(PO2CH2)-Gly-Pro-Nle (1) and the phosphonamide peptide Z-Phe-psi(PO2NH)-Gly-Pro-Nle (2) shows that for bacterial collagenase the replacement of a CH2 by an NH group results only in a modest increase in affinity from Ki = 8 nM for compound 1 to Ki = 6 nM for compound 2. Most of the phosphorus-containing inhibitors of this series are slow- or slow-tight-binding inhibitors with second-order rate constants for association and dissociation varying respectively for the kon values from 1 x 10(3) to 26 x 10(3) M-1.s-1 and for the koff values from 3 x 10(-4) to 2 x 10(-5) s-1. Interestingly, the lower affinity of the molecule containing a D residue in the P1 position of the inhibitor, compared with the molecule with an L residue in this position, is mainly the consequence of a lower rate constant for association of these D stereoisomers with the enzyme. This study demonstrates that phosphinic peptide analogues are potent inhibitors of a bacterial collagenase. The development of new phosphinic peptides should lead to the discovery of potent inhibitors of other zinc metalloproteases. Details of how the analogues were synthesized are given in Supplementary Publication SUP 50176 (14 pages), which has been deposited with the British Library Document Supply Centre, Boston Spa, Wetherby, W. Yorkshire LS23 7BQ, from whom copies can be obtained on the terms indicated in Biochem. J. (1994) 297, 9.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3