Reconstitution of proteolipid protein: some properties and its role in interlamellar attachment

Author:

ter Beest M B A1,Hoekstra K1,Sein A2,Hoekstra D1

Affiliation:

1. Laboratory of Physiological Chemistry, University of Groningen, Bloemsingel 10, 9712 KZ Groningen, The Netherlands,

2. Department of Organic Chemistry, University of Groningen, Nijenborgh 16, 9747 AG Groningen, The Netherlands

Abstract

Proteolipid apoprotein (PLP) isolated from human brain was reconstituted in dioleoylphosphatidylcholine vesicles by dialysis from 2-chloroethanol, using a dialysis buffer of pH 5.0. Under these conditions, and in contrast with dialysis carried out at pH 7.4, well-defined unilamellar vesicles containing the protein were formed. As judged by electron microscopy and quasi-elastic light scattering, the size of the vesicles was determined by the initial protein/lipid ratio used for reconstitution. When the vesicles were incubated in a buffer at neutral pH, aggregation of the vesicles was observed, but their structure remained intact. Asymmetric aggregation occurred when the reconstituted vesicles were incubated with large unilamellar vesicles (LUVs) devoid of protein. This aggregation was accompanied by loss of membrane integrity, as revealed by extensive leakage of the LUVs, and by membrane lipid dilution, indicative of the occurrence of membrane fusion. Destabilization of the vesicles depended on the presence of negatively charged phosphatidylserine in the membrane of the LUVs. Similar effects, but to a lesser extent, were seen when the LUVs contained sulphatide, a negatively charged lipid prominently present in myelin. DM 20, a natural mutant of PLP, appeared to be far less potent in causing membrane lipid dilution than PLP. This could suggest that a distinct protein sequence of PLP, which is absent from DM 20, may be involved in triggering the observed membrane destabilization. Temperature-dependent experiments indicate that this sequence in PLP displays dynamic properties, its exposure being affected by conformational criteria. Exposure of this particular domain, in conjunction with its affinity for negatively charged lipid, could be related to a perturbation of the integrity of the myelin sheath, as will be discussed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3