Carbon dioxide contributes to the beneficial effect of pressurization in a portable hyperbaric chamber at high altitude

Author:

IMRAY Christopher H. E.1,CLARKE Timothy2,FORSTER Peter J. G.3,HARVEY Timothy C.4,HOAR Helen5,WALSH Sarah2,WRIGHT Alexander D.5

Affiliation:

1. Department of Surgery, Walsgrave Hospital, Coventry, U.K.

2. Department of Anaesthetics, James Paget Hospital, Yarmouth, U.K.

3. Department of Medicine, James Paget Hospital, Yarmouth, U.K.

4. Department of Medicine, Manor Hospital, Walsall, West Midlands, U.K.

5. The Medical School, University of Birmingham, Birmingham, U.K.

Abstract

Regional cerebral oxygenation (rSO2) and peripheral oxygen saturation (SpO2) have been studied in subjects inside a portable hyperbaric chamber at altitude during pressurization. The effects of the accumulation of carbon dioxide within the chamber on rSO2 and SpO2 have also been investigated. Three studies of cerebral regional oxygenation were undertaken, using near-IR spectroscopy, in subjects who had ascended to 3475 m in the Alps, 4680 m in the Andes or 5005 m in the Himalayas. At 3475 m and 5005 m the effects of the removal of inspired carbon dioxide by a soda lime scavenger were also studied. On pressurization of the chamber to 19.95 kPa, inspired carbon dioxide rose within the chamber from 0.03% (0.06 kPa) ambient to over 1% (1.3 kPa). At 5005 m, SpO2 rose from a baseline of 79.5% (S.D. 4.5%) to 95.9% (2.0%) (P < 0.0001), and cerebral rSO2 rose from 64.6% (3.4%) to 69.4% (3.6%) (P < 0.0001). The introduction of a soda lime CO2 scavenger into the breathing circuit resulted in a drop in SpO2 from 95.9% (2.03%) to 93.6% (2.07%) (P < 0.001) and a fall in rSO2 from 69.4% (3.64%) to 68.5% (3.5%) (P < 0.01). Chamber pressure was maintained throughout at 19.95 kPa. Similar changes were seen at the other altitudes. Cerebral rSO2 increased rapidly following pressurization at all three altitudes. Scavenging of inspired carbon dioxide was associated with a significant fall in cerebral rSO2 and SpO2, and we estimate that the contribution of carbon dioxide may account for up to one-third of the beneficial effect of the portable hyperbaric chamber.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3