Perturbations in mitochondrial dynamics by p66Shc lead to renal tubular oxidative injury in human diabetic nephropathy

Author:

Zhan Ming12,Usman Irtaza3,Yu Jingbo1,Ruan Liemin1,Bian Xueyan1,Yang Jun1,Yang Shikun4,Sun Lin2,Kanwar Yashpal S.3

Affiliation:

1. Department of Medicine, Ningbo First Hospital, Zhejiang University, Ningbo, China

2. Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China

3. Departments of Pathology and Medicine, Northwestern University, Chicago, IL, U.S.A.

4. Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China

Abstract

Renal tubular injury is increasingly being recognized as an early characteristic of diabetic nephropathy (DN). Mitochondrial dynamic alterations and redox protein p66Shc-mediated oxidative stress are both critical for ensuing diabetic tubular cell injury and apoptosis; whether these two processes are interlinked remains unclear. In the present study, we observed changes in mitochondrial morphology and expression of associated proteins in tubules of patients with DN. We demonstrated mitochondrial fragmentation as an important pathogenic feature of tubular cell injury that is linked to oxidative stress and p66Shc up-regulation. In renal proximal tubular cells, alterations in mitochondrial dynamics and expression of fission–fusion proteins were observed under high glucose (HG) ambience, along with p66Shc Ser36 phosphorylation. Gene ablation of p66Shc alleviated HG-induced mitochondrial fragmentation, down-regulated Fis1 and reduced p66Shc–Fis1 binding, increased Mfn1 expression, and disrupted interactions between Mfn1 and proapoptotic Bak. Overexpression of p66Shc exacerbated these changes, whereas overexpression of dominant-negative p66Shc Ser36 mutant had a marginal effect under HG, indicating that p66Shc phosphorylation as a prerequisite in the modulation of mitochondrial dynamics. Disrupted mitochondrial dynamics and enhanced Mfn1–Bak interactions modulated by p66Shc led to loss of mitochondrial voltage potential, cytochrome C release, excessive ROS generation, and apoptosis. Taken together, these results link p66Shc to mitochondrial dynamic alterations in the pathogenesis of DN and unveil a novel mechanism by which p66Shc mediates HG-induced mitochondrial fragmentation and proapoptotic signaling that results in oxidative injury and apoptosis in the tubular compartment in human diabetic nephropathy.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3