The insecticide β-Cyfluthrin induces acute arrhythmic cardiotoxicity through interaction with NaV1.5 and ranolazine reverses the phenotype

Author:

da Silva Maria Vitoria1ORCID,Santos-Miranda Artur1,Joviano-Santos Julliane V.1,Souza Diego Santos1,Marques Leisiane Pereira1,Sarmento Jaqueline Oliveira1,Beserra Samuel Santos1,Roman-Campos Danilo1ORCID

Affiliation:

1. Department of Biophysics, Federal University of São Paulo, Brazil

Abstract

Abstract β-Cyfluthrin, a class II Pyrethroid, is an insecticide used worldwide in agriculture, horticulture (field and protected crops), viticulture, and domestic applications. β-Cyfluthrin may impair the function of biological systems; however, little information is available about its potential cardiotoxic effect. Here, we explored the acute toxicity of β-Cyfluthrin in isolated heart preparations and its cellular basis, using isolated cardiomyocytes. Moreover, β-Cyfluthrin effects on the sodium current, especially late sodium current (INa-L), were investigated using human embryonic kidney cells (HEK-293) cells transiently expressing human NaV1.5 channels. We report that β-Cyfluthrin raised INa-L in a dose-dependent manner. β-Cyfluthrin prolonged the repolarization of the action potential (AP) and triggered oscillations on its duration. Cardiomyocytes contraction and calcium dynamics were disrupted by the pesticide with a marked incidence of non-electronic-stimulated contractions. The antiarrhythmic drug Ranolazine was able to reverse most of the phenotypes observed in isolated cells. Lastly, ventricular premature beats (VPBs) and long QT intervals were found during β-Cyfluthrin exposure, and Ranolazine was able to attenuate them. Overall, we demonstrated that β-Cyfluthrin can cause significant cardiac alterations and Ranolazine ameliorated the phenotype. Understanding the insecticides’ impacts upon electromechanical properties of the heart is important for the development of therapeutic approaches to treat cases of pesticides intoxication.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3