Mechanisms of the antinatriuretic action of physiological doses of angiotensin II in man

Author:

Seidelin Peter H.1,McMurray John J.1,Struthers Allan D.1

Affiliation:

1. Department of Clinical Pharmacology, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, U.K.

Abstract

1. Angiotensin 11 (ANG II; 1 ng min−1 kg−1) or 5% (w/v) d-glucose (placebo) was infused in six normal male volunteers, pretreated with 500 mg of lithium carbonate, who were undergoing maximal water diuresis. 2. This dose of ANG II caused a circulating increment within the physiological range (27 ± 4 to 48 ± 9 pmol/l). 3. Compared with placebo, ANG II caused a significant fall in urinary sodium excretion (113 ± 13 to 82 ± 10 μmol/min). This antinatriuretic effect occurred without a fall in creatinine clearance (107 ± 3 versus 113 ± 3 ml/min). 4. ANG II caused a significant fall in fractional lithium clearance (28 ± 2 to 23 ± 2%). This may indicate a proximal tubular effect of ANG II. 5. ANG II also reduced fractional distal delivery [(sodium clearance plus free water clearance) divided by creatinine clearance], another measure of proximal tubular outflow. A parallel change in these two separate markers of proximal function supports an action of ANG II at this nephron segment. 6. Furthermore, the antinatriuretic effect of ANG II was unlikely to be due to stimulation of aldosterone secretion because (a) the fall in sodium excretion was temporally dissociated from the rise in aldosterone secretion, (b) potassium excretion also tended to fall during ANG II infusion and (c) aldosterone has a distal nephron effect, while, in this study, proximal nephron fractional reabsorption of sodium increased and distal nephron fractional reabsorption of sodium was unchanged. 7. These observations suggest that physiological increments in ANG II can have an antinatriuretic effect in man, which, at least initially, results from increased proximal tubular sodium reabsorption and is independent of the effect of aldosterone.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3