Insulin exocytosis in Goto-Kakizaki rat β-cells subjected to long-term glinide or sulfonylurea treatment

Author:

Kawai Junko12,Ohara-Imaizumi Mica1,Nakamichi Yoko1,Okamura Tadashi3,Akimoto Yoshihiro4,Matsushima Satsuki5,Aoyagi Kyota1,Kawakami Hayato4,Watanabe Takashi5,Watada Hirotaka2,Kawamori Ryuzo2,Nagamatsu Shinya1

Affiliation:

1. Department of Biochemistry, Kyorin University School of Medicine, Mitaka, Tokyo 181–8611, Japan

2. Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo, 113–8421, Japan

3. Division of Animal Models, Department of Infectious Diseases, Research Institute, International Medical Center of Japan, Tokyo 162–8655, Japan

4. Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo 181–8611, Japan

5. Department of Clinical Pathology, Kyorin University School of Medicine, Mitaka, Tokyo 181–8611, Japan

Abstract

Sulfonylurea and glinide drugs display different effects on insulin granule motion in single β-cells in vitro. We therefore investigated the different effects that these drugs manifest towards insulin release in an in vivo long-term treatment model. Diabetic GK (Goto-Kakizaki) rats were treated with nateglinide, glibenclamide or insulin for 6 weeks. Insulin granule motion in single β-cells and the expression of SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) proteins were then analysed. Perifusion studies showed that decreased first-phase insulin release was partially recovered when GK rats were treated with nateglinide or insulin for 6 weeks, whereas no first-phase release occurred with glibenclamide treatment. In accord with the perifusion results, TIRF (total internal reflection fluorescence) imaging of insulin exocytosis showed restoration of the decreased number of docked insulin granules and the fusion events from them during first-phase release for nateglinide or insulin, but not glibenclamide, treatment; electron microscopy results confirmed the TIRF microscopy data. Relative to vehicle-treated GK β-cells, an increased number of SNARE clusters were evident in nateglinide- or insulin-treated cells; a lesser increase was observed in glibenclamide-treated cells. Immunostaining for insulin showed that nateglinide treatment better preserved pancreatic islet morphology than did glibenclamide treatment. However, direct exposure of GK β-cells to these drugs could not restore the decreased first-phase insulin release nor the reduced numbers of docked insulin granules. We conclude that treatment of GK rats with nateglinide and glibenclamide varies in long-term effects on β-cell functions; nateglinide treatment appears overall to be more beneficial.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3