Plasma-membrane calcium-pump isoforms in human and rat liver

Author:

Howard A1,Barley N F1,Legon S1,Walters J R F1

Affiliation:

1. Gastroenterology Unit, Departments of Medicine and Chemical Pathology, Royal Postgraduate Medical School, Hammersmith Hospital, Du Cane Road, London W12 ONN, U.K.

Abstract

Plasma-membrane Ca(2+)-pumping ATPases (PMCAs) extrude Ca2+ from the cytoplasm of all cells. Some previous studies of ATP-dependent Ca2+ transport by liver membranes suggested there exist specific properties of the hepatic PMCA, including regulation by hormones which affect calcium signalling. Multiple PMCA isoforms are now known to result from expression of four different genes (known as PMCA 1-4) and alternative RNA splicing at three possible sites (A, B and C). We investigated which isoforms are expressed in adult human and rat liver RNA using reverse-transcription polymerase chain reaction with mixed primers designed to amplify parts of all the known PMCA transcripts. In human liver, products were identified by sequencing from PMCA1, PMCA2 and PMCA4, but not from PMCA3 or from any new gene. In rat liver, by contrast, only PMCA1 and PMCA2 were detectable, although we confirmed that the primers were able to amplify from rat lung a new sequence which is part of rat PMCA4. Of the alternatively spliced variants, at site A in the PMCA2 sequences, all the exons were included in both adult and fetal human liver. In human liver, the exon at site B was excluded in some products from PMCA1 and PMCA4, and at site C, only PMCA1b and one form of PMCA4 were found. Blots of human liver RNA showed PMCA1 and PMCA4 were abundantly expressed, unlike PMCA2. On blots of rat liver RNA, PMCA1 was more abundant than PMCA2, and purified rat parenchymal cell RNA gave similar findings. In summary, no new hepatic PMCA isoforms have been demonstrated, but differences between the predominant human and rat isoforms may have consequences for Ca2+ signalling or the response to liver cell injury.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3