Abstract
1. In isolated rat liver cells, hypoglycin is a less effective inhibitor of gluconeogenesis than its transamination product, methylenecyclopropylpyruvate (ketohypoglycin). 2. Methylenecyclopropylpyruvate at 0.3 mM inhibits gluconeogenesis from all substrates tested, except fructose. 3. Methylenecyclopropylpyruvate does not affect 14CO2 release from [1(-14)C]palmitate, but, in the absence of lactate, inhibits ketogenesis and causes a decrease in the [beta-hydroxybutyrate]/[acetoacetate] ratio. These effects are masked when lactate (10 mM) is present. 4. In the presence of lactate and palmitate, 0.3 mM-methylenecyclopropylpyruvate produces a fall in total acid-soluble CoA and a relative increase in short-chain acyl-CoA at the expense of CoA and acetyl-CoA without changing the ATP, ADP and aspartate contents or the [lactate]/[pyruvate] ratio. 5. Many of the effects of methylenecyclopropylpyruvate observed are consistent with inhibition of butyryl-CoA dehydrogenase and of specific CoA-dependent enzymes involved in gluconeogenesis.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献