MEF2 is regulated by CaMKIIδ2 and a HDAC4–HDAC5 heterodimer in vascular smooth muscle cells

Author:

Ginnan Roman1,Sun Li Yan1,Schwarz John J.1,Singer Harold A.1

Affiliation:

1. Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, U.S.A.

Abstract

VSMCs (vascular smooth muscle cells) dedifferentiate from the contractile to the synthetic phenotype in response to acute vascular diseases such as restenosis and chronic vascular diseases such as atherosclerosis, and contribute to growth of the neointima. We demonstrated previously that balloon catheter injury of rat carotid arteries resulted in increased expression of CaMKII (Ca2+/calmodulin-dependent protein kinase) IIδ2 in the medial wall and the expanding neointima [House and Singer (2008) Arterioscler. Thromb. Vasc. Biol. 28, 441–447]. These findings led us to hypothesize that increased expression of CaMKIIδ2 is a positive mediator of synthetic VSMCs. HDAC (histone deacetylase) 4 and HDAC5 function as transcriptional co-repressors and are regulated in a CaMKII-dependent manner. In the present paper, we report that endogenous HDAC4 and HDAC5 in VSMCs are activated in a Ca2+- and CaMKIIδ2-dependent manner. We show further that AngII (angiotensin II)- and PDGF (platelet-derived growth factor)-dependent phosphorylation of HDAC4 and HDAC5 is reduced when CaMKIIδ2 expression is suppressed or CaMKIIδ2 activity is attenuated. The transcriptional activator MEF2 (myocyte-enhancer factor 2) is an important determinant of VSMC phenotype and is regulated in an HDAC-dependent manner. In the present paper, we report that stimulation of VSMCs with ionomycin or AngII potentiates MEF2's ability to bind DNA and increases the expression of established MEF2 target genes Nur77 (nuclear receptor 77) (NR4A1) and MCP1 (monocyte chemotactic protein 1) (CCL2). Suppression of CaMKIIδ2 attenuates increased MEF2 DNA-binding activity and up-regulation of Nur77 and MCP1. Finally, we show that HDAC5 is regulated by HDAC4 in VSMCs. Suppression of HDAC4 expression and activity prevents AngII- and PDGF-dependent phosphorylation of HDAC5. Taken together, these results illustrate a mechanism by which CaMKIIδ2 mediates MEF2-dependent gene transcription in VSMCs through regulation of HDAC4 and HDAC5.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3