Identification of optimal strategies for state transition of complex biological networks

Author:

Yuan Meichen1,Hong Weirong1,Li Pu2

Affiliation:

1. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China

2. Simulation and Optimal Processes Group, Institute of Automation and Systems Engineering, Ilmenau University of Technology, Ilmenau 98684, Germany

Abstract

Complex biological networks typically contain numerous parameters, and determining feasible strategies for state transition by parameter perturbation is not a trivial task. In the present study, based on dynamical and structural analyses of the biological network, we optimized strategies for controlling variables in a two-node gene regulatory network and a T-cell large granular lymphocyte signaling network associated with blood cancer by using an efficient dynamic optimization method. Optimization revealed the critical value for each decision variable to steer the system from an undesired state into a desired attractor. In addition, the minimum time for the state transition was determined by defining and solving a time-optimal control problem. Moreover, time-dependent variable profiles for state transitions were achieved rather than constant values commonly adopted in previous studies. Furthermore, the optimization method allows multiple controls to be simultaneously adjusted to drive the system out of an undesired attractor. Optimization improved the results of the parameter perturbation method, thus providing a valuable guidance for experimental design.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3