NMR solution conformation of heparin-derived tetrasaccharide

Author:

MIKHAILOV Dmitri1,MAYO Kevin H.1,VLAHOV Ioncho R.2,TOIDA Toshihiko2,PERVIN Azra2,LINHARDT Robert J.2

Affiliation:

1. Departments of Biochemistry and Laboratory of Medicine and Pathology, Biomedical Engineering Center, University of Minnesota Medical School, 420 Delaware Street, S.E., Minneapolis, MN 55455, U.S.A.

2. Department of Medicinal and Natural Products Chemistry, College of Pharmacy, The University of Iowa, 115 S. Grand Ave., Iowa City, IA 52242, U.S.A

Abstract

The solution conformation of the homogeneous, heparin-derived tetrasaccharide ΔUA2S(1 → 4)-α-d-GlcNpS6S(1 → 4)-α-l-IdoAp2S(1 → 4)-α-d-GlcNpS6S (residues A, B, C and D respectively, where IdoA is iduronic acid) has been investigated by using 1H- and 13C-NMR. Ring conformations have been defined by J-coupling constants and inter-proton nuclear Overhauser effects (NOEs), and the orientation of one ring with respect to the other has been defined by inter-ring NOEs. NOE-based conformational modelling has been done by using the iterative relaxation matrix approach (IRMA), restrained molecular dynamics simulations and energy minimization to refine structures and to distinguish between minor structural differences and equilibria between various ring forms. Both glucosamine residues B and D are in the 4C1 chair conformation. The 6-O-sulphate group is oriented in the gauche–trans configuration in the D ring, whereas in the B ring the gauche–gauche rotomer predominates. Uronate (A) and iduronate (C) residues are mostly represented by 1H2 and 2S0 twisted boat forms, respectively, with small deviations in expected coupling constants and NOEs suggesting minor contributions from other A and C ring conformations.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3