Ornithine and glutamate decarboxylases catalyse an oxidative deamination of their α-methyl substrates

Author:

BERTOLDI Mariarita1,CARBONE Virginia2,VOLTATTORNI Carla BORRI1

Affiliation:

1. Dipartimento di Scienze Neurologiche e della Visione, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università degli Studi di Verona, Strada Le Grazie 8, 37134 Verona, Italy

2. Centro Nazionale delle Ricerche, Centro Internazionale di Servizi di Spettrometria di Massa, Via Pansini 5, 80131 Napoli, Italy

Abstract

Ornithine decarboxylase (ODC) from Lactobacillus 30a catalyses the cleavage of α-methylornithine into ammonia and 2-methyl-1-pyrroline; glutamate decarboxylase (GAD) from Escherichia coli catalyses the cleavage of α-methylglutamate into ammonia and laevulinic acid. In our analyses, 2-methyl-1-pyrroline and laevulinic acid were identified by HPLC and mass spectroscopic analysis, and ammonia was identified by means of glutamate dehydrogenase. Molecular oxygen was consumed during these reactions in a 1:2 molar ratio with respect to the products. The catalytic efficiencies (kcat/Km) of the reactions catalysed by ODC and GAD were determined as 12500 and 9163 M-1˙min-1 respectively. When the reactions were performed under anaerobic conditions, no ammonia, 2-methyl-1-pyrroline or laevulinic acid was produced to a significant extent. The formation of ammonia and O2 consumption (in a 1:2 molar ratio with respect to ammonia) were also detected during the reaction of ODC and GAD with putrescine and γ-aminobutyrate respectively. Taken together, these findings clearly indicate that ODC and GAD catalyse an oxidative deamination of their decarboxylation products, a reaction similar to that catalysed by dopa decarboxylase (DDC) with α-methyldopa [Bertoldi, Dominici, Moore, Maras and Borri Voltattorni (1998) Biochemistry 37, 6552-6561]. Furthermore, this reaction was accompanied by a decarboxylation-dependent transamination occurring for GAD, DDC and ODC with a frequency of approx. 0.24%, 1% and 9% respectively compared with that of oxidative deamination.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3