Enzymic sulphation of dopa and tyrosine isomers by HepG2 human hepatoma cells: stereoselectivity and stimulation by Mn2+

Author:

SUIKO Masahito12,SAKAKIBARA Yoichi12,NAKAJIMA Hiroshi3,SAKAIDA Hiroshi12,LIU Ming-Cheh1

Affiliation:

1. Department of Biochemistry, University of Texas Health Center at Tyler, Tyler, TX 75710, U.S.A.

2. Department of Biological Resource Sciences, Miyazaki University, Miyazaki 889-21, Japan

3. Department of Biochemistry, Unitika R&D Center, 23 Kozakura Uji, Kyoto 611, Japan

Abstract

HepG2 human hepatoma cells, labelled with [35S]sulphate in media containing L-3,4-dihydroxyphenylalanine (L-dopa), (D-dopa), DL-m-tyrosine or D-p-tyrosine, were found to produce the [35S]sulphated forms of these compounds. Addition to the labelling media of m-hydroxybenzylhydrazine, an aromatic amino acid decarboxylase inhibitor, greatly enhanced the production of L-dopa O-[35S]sulphate and Dl-m-tyrosine O-[35S]sulphate, with a concomitant decrease in the formation of dopamine O-[35S]sulphate and m-tyramine O-[35S]sulphate. With 3´-phosphoadenosine 5´-phospho[35S]sulphate as the sulphate donor, HepG2-cell cytosol was shown to contain enzymic activity catalysing the sulphation of L-dopa, D-dopa, L-m-tyrosine, D-m-tyrosine, L-p-tyrosine and D-p-tyrosine. The pH optimum of the enzyme, designated dopa/tyrosine sulphotransferase, was determined to be 8.75 with D-m-tyrosine as the substrate. The enzyme exhibited stereoselectivity for the D-form of dopa or tyrosine isomers. Addition of 10 mM MnCl2 to the reaction mixture resulted in a remarkable stimulation of dopa/tyrosine sulphotransferase activity, being as high as 267.8 times with D-p-tyrosine as the substrate. Quantitative assays revealed L-dopa, D-dopa and D-m-tyrosine to be better substrates than L-p-tyrosine. When the HepG2-cell cytosol was subjected to DEAE Bio-Gel and hydroxyapatite column chromatography, dopa/tyrosine sulphotransferase was co-eluted with the thermolabile ‘M-form’ phenol sulphotransferase. Furthermore dopa/tyrosine sulphotransferase displayed properties similar to that of the M-form phenol sulphotransferase with respect to thermostability and sensitivity to 2,6-dichloro-4-nitrophenol. Whether the M-form phenol sulphotransferase is truly (solely) responsible for the dopa/tyrosine sulphotransferase activity present in HepG2 cells remains to be clarified.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3