Mechanism of the decrease in hexose transport by mouse mammary epithelial cells caused by fasting

Author:

Prosser C G1

Affiliation:

1. Laboratory of Biochemistry and Metabolism, National Institutes of Health, Bethesda, MD 20892.

Abstract

The basal carrier-mediated uptake of 0.5 mM-3-O-methylglucose by mammary epithelial cells from lactating mice was calculated to be 227 +/- 9 pmol/min per microgram of DNA (mean +/- S.E.M., n = 11). Fasting the mice for 16 h overnight resulted in a decrease in this rate to 65 +/- 4 pmol/min per microgram of DNA (n = 10). Refeeding the fasted mouse for 3 h before isolation of the cells restored the transport activity to 230 +/- 12 pmol/min per microgram of DNA (n = 12). The Vmax. for equilibrium exchange entry of 3-O-methylglucose by intact cells was decreased from 6.6 +/- 0.4 to 0.9 +/- 0.2 nmol/min per microgram of DNA (mean +/- S.E.M., n = 3) by fasting. The number of D-glucose-inhibitable cytochalasin-B-binding sites in a plasma-membrane-enriched fraction of the cells was also decreased from 5.7 +/- 1.5 to 1.7 +/- 0.1 pmol/mg of membrane protein (mean +/- S.E.M., n = 3). Again, refeeding the fasted mouse for 3 h reversed both these effects. These results are consistent with a decrease in the number of functional glucose carriers in the plasma membrane of the mammary epithelial cells. Since the restoration of transporter activity after refeeding does not appear to require the synthesis of new protein, the effect of fasting probably involves not a loss of transporters, but a change in their orientation within the plasma membrane or a redistribution within the cell.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3