Affiliation:
1. Lady Davis Institute for Medical Research of the Jewish General Hospital, Canada.
2. Department of Medicine, McGill University, Montreal, Quebec H3T 1 E2, Canada
Abstract
We have examined the effect of non-enzymic glycation of native soluble collagen, in solution or in gels, on binding of oxidized low-density lipoprotein (LDL). We found the following. (1) Glycation markedly inhibited binding of LDL. This is contrary to results previously reported; the difference may be attributable to the use of detergent- and heat-denatured collagen, covalently bound to agarose beads, in the earlier study. (2) With increased duration of glycation, collagen solution would not gel, and preformed gels dissolved. (3) [14C]Glucose bound to collagen gels dissociated slowly, even at pH 5, suggesting that it was not present as a Schiff's base; in addition, ketoamines, pentosidine and fluorescent advanced glycation products were not detectable in glycated collagen gels, although they accumulated in tendon collagen glycated under the same conditions. It is hypothesized that the difference in glycation effects between gel and tendon may be due to the strength of cross-linking before glycation: the increase in intermolecular distance in collagen fibrils which results from glycation disrupts the fibrils in gels, preventing binding of LDL and formation of glycation-dependent cross-links, whereas the extensive cross-linking in tendon maintains the intermolecular distances within a range which permits formation of glycation cross-links.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献