Heparin-affinity patterns and composition of extracellular superoxide dismutase in human plasma and tissues

Author:

Sandström J1,Karlsson K2,Edlund T1,Marklund S L2

Affiliation:

1. Department of Microbiology, University of Umeå S-901 87 Umeå, Sweden

2. Deparment of Clinical Chemistry, Umeå University Hospital, S-901 85 Umeå, Sweden

Abstract

The tetrameric extracellular superoxide dismutase (EC-SOD) in human tissues and plasma has previously been found to be heterogenous with regard to heparin affinity and could be divided into at least three classes: A, lacking heparin affinity; B, with weak affinity; and C, with strong affinity. Using rigorous extraction conditions and an extensive set of anti-proteolytic agents, tissue EC-SOD is now shown to be almost exclusively of native homotetrameric C-class. Plasma EC-SOD on the other hand is shown to be mainly composed of a complex mixture of heterotetramers with modifications probably residing in the C-terminal heparin-binding domain. Proteolytic truncations appear to be a major cause of this heterogeneity. The findings suggest that, since 99% of the EC-SOD in the human body exists in the extravascular space of tissue, EC-SOD is primarily synthesized in tissues and secreted as homotetrameric native EC-SOD C. This tissue EC-SOD C should exist almost completely sequestered by heparin sulphate proteoglycans. C-terminal modifications subsequently occurring in the EC-SOD C would weaken the binding to heparan sulphate proteoglycan, facilitate entrance to the vasculature through capillaries and lymph flow, and finally result in the heterogeneous plasma EC-SOD pattern. With the new extraction and analysis procedure, the tissue content of EC-SOD is found to be higher than previously reported. It is found, for example, when compared with Mn-SOD, to be higher in umbilical cord and uterus, about equal in placenta and testis and as high as that of CuZn-SOD in umbilical cord. The findings suggest that the protection level against superoxide radicals provided by EC-SOD in the tissue interstitial space, given the small distribution volume, is not much less prominent than that bestowed on the intracellular space by CuZn-SOD and Mn-SOD.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3