Translational regulation of lipoprotein lipase in adipocytes: depletion of cellular protein kinase Cα activates binding of the C subunit of protein kinase A to the 3′-untranslated region of the lipoprotein lipase mRNA

Author:

Unal Resat1,Pokrovskaya Irina1,Tripathi Preeti1,Monia Brett P.2,Kern Philip A.1,Ranganathan Gouri1

Affiliation:

1. The Central Arkansas Veterans HealthCare System, Department of Medicine, Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, U.S.A.

2. ISIS Pharmaceuticals, 2292 Faraday Avenue, Carlsbad, CA 92008, U.S.A.

Abstract

Adipose LPL (lipoprotein lipase) plays an important role in regulating plasma triacylglycerols and lipid metabolism. We have previously demonstrated that PKCα (protein kinase Cα) depletion inhibits LPL translation in 3T3-F442A adipocytes. Using in vitro translation experiments, the minimum essential region on the 3′UTR (3′-untranslated region) of LPL mRNA required for the inhibition of translation was identified as the proximal 39 nt. These results were confirmed by RNase protection analysis using cytoplasmic proteins isolated from the adipocytes treated with PKCα antisense oligomers and the LPL 3′UTR transcript (LPL 3′UTR nt: 1512–1640). The protein components involved in this RNA-binding interaction from PKCα depletion were passed through an affinity column containing a sequence of the LPL 3′UTR and, after Western blotting, the RNA-binding proteins were identified as the catalytic and the regulatory subunits of PKA (protein kinase A), Cα and RIIβ, and AKAP (A-kinase-anchoring protein) 121. This RNA inhibitory complex consisted of the same RNA-binding proteins that have been identified previously as mediators of LPL translational inhibition by PKA activation, suggesting that PKCα depletion inhibits LPL translation through PKA activation. In additional experiments, PKC depletion by prolonged PMA treatment or PKCα antisense oligomers resulted in an increase in PKA activity in 3T3-F442A adipocytes, comparable with PKA activation with adrenaline (epinephrine) treatment. These results demonstrate that LPL translational inhibition occurs through an RNA-binding complex involving PKA subunits and AKAP121, and this complex can be activated either through traditional PKA activation methods or through the depletion of PKCα.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3