TRPC3 amplifies B-cell receptor-induced ERK signalling via protein kinase D-dependent Rap1 activation

Author:

Numaga-Tomita Takuro12,Nishida Motohiro123,Putney James W.4,Mori Yasuo5

Affiliation:

1. Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan

2. SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan

3. PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

4. National Institute of Environmental Health Sciences, National Institutes of Health (NIH), 2233, Research Triangle Park, NC 27709, U.S.A.

5. Laboratory of Molecular Biology, Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto University Katsura campus, Nishikyo-ku, Kyoto 615-8510, Japan

Abstract

Sustained activation of extracellular-signal-regulated kinase (ERK) has an important role in the decision regarding the cell fate of B-lymphocytes. Recently, we demonstrated that the diacylglycerol-activated non-selective cation channel canonical transient receptor potential 3 (TRPC3) is required for the sustained ERK activation induced by the B-cell receptor. However, the signalling mechanism underlying TRPC3-mediated ERK activation remains elusive. In the present study, we have shown that TRPC3 mediates Ca2+ influx to sustain activation of protein kinase D (PKD) in a protein kinase C-dependent manner in DT40 B-lymphocytes. The later phase of ERK activation depends on the small G-protein Rap1, known as a downstream target of PKD, whereas the earlier phase of ERK activation depends on the Ras protein. It is of interest that sustained ERK phosphorylation is required for the full induction of the immediate early gene Egr-1 (early growth response 1). These results suggest that TRPC3 reorganizes the BCR signalling complex by switching the subtype of small G-proteins to sustain ERK activation in B-lymphocytes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3