CydDC-mediated reductant export in Escherichia coli controls the transcriptional wiring of energy metabolism and combats nitrosative stress

Author:

Holyoake Louise V.1,Hunt Stuart2,Sanguinetti Guido3,Cook Gregory M.4,Howard Mark J.1,Rowe Michelle L.1,Poole Robert K.2,Shepherd Mark1

Affiliation:

1. School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K.

2. Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, U.K.

3. School of Informatics, The University of Edinburgh, Informatics Forum, 10 Crichton Street, Edinburgh EH8 9AB, U.K.

4. Department of Microbiology and Immunology, University of Otago, P.O. Box 56, 720 Cumberland Street, Dunedin 9054, New Zealand

Abstract

The glutathione/cysteine exporter CydDC maintains redox balance in Escherichia coli. A cydD mutant strain was used to probe the influence of CydDC upon reduced thiol export, gene expression, metabolic perturbations, intracellular pH homoeostasis and tolerance to nitric oxide (NO). Loss of CydDC was found to decrease extracytoplasmic thiol levels, whereas overexpression diminished the cytoplasmic thiol content. Transcriptomic analysis revealed a dramatic up-regulation of protein chaperones, protein degradation (via phenylpropionate/phenylacetate catabolism), β-oxidation of fatty acids and genes involved in nitrate/nitrite reduction. 1H NMR metabolomics revealed elevated methionine and betaine and diminished acetate and NAD+ in cydD cells, which was consistent with the transcriptomics-based metabolic model. The growth rate and ΔpH, however, were unaffected, although the cydD strain did exhibit sensitivity to the NO-releasing compound NOC-12. These observations are consistent with the hypothesis that the loss of CydDC-mediated reductant export promotes protein misfolding, adaptations to energy metabolism and sensitivity to NO. The addition of both glutathione and cysteine to the medium was found to complement the loss of bd-type cytochrome synthesis in a cydD strain (a key component of the pleiotropic cydDC phenotype), providing the first direct evidence that CydDC substrates are able to restore the correct assembly of this respiratory oxidase. These data provide an insight into the metabolic flexibility of E. coli, highlight the importance of bacterial redox homoeostasis during nitrosative stress, and report for the first time the ability of periplasmic low molecular weight thiols to restore haem incorporation into a cytochrome complex.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3