Alteration of pore properties of Escherichia coli OmpF induced by mutation of key residues in anti-loop 3 region

Author:

BREDIN Jérôme1,SAINT Nathalie2,MALLÉA Monique1,DÉ Emmanuelle2,MOLLE Gérard2,PAGÈS Jean-Marie,SIMONET Valérie1

Affiliation:

1. CJF9606-EA2197, IFR 48, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France

2. UMR 6522, CNRS, IFRMP 23, Faculté des Sciences, 76821 Mont-Saint-Aignan Cedex, France

Abstract

The Escherichia coli OmpF pore is governed by an internal constriction consisting of the negatively charged loop 3 folded into the lumen and the positively charged barrel wall located on the opposite side across the pore, ‘anti-loop 3'. To investigate the role of anti-loop 3 in solute diffusion, four site-directed mutations, K16A, K16D, R132A and R132D, were introduced into this eyelet region. The mutant porins were expressed efficiently and inserted into the outer membrane, and the thermal stabilities of the resulting trimers were determined. Diffusion of cefepime, a recently developed cephalosporin, was analysed in vivo. In vitro studies were performed on purified porins reconstituted in planar lipid bilayers to measure conductance, selectivity and voltage closure, as well as in liposomes for patch-clamp and sugar-swelling assays. All substitutions modified the ion-channel parameters, and minor conformational changes in the OmpF eyelet region were predicted from modelling studies. Our data show that Lys-16, and to a lesser extent Arg-132, are involved in voltage-gating and pore selectivity via their side-chain charges. Substitution K16D, which causes a severe decrease in critical voltage (Vc), may generate a channel susceptible to membrane potential, which perturbs cefepime diffusion. These results suggest that the Lys-16 residue plays an important role in the process of diffusion through the OmpF lumen.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3