Cardiolipin biosynthesis in the isolated heart

Author:

Hatch G M1

Affiliation:

1. Departments of Internal Medicine and Biochemistry and Molecular Biology, University of Manitoba, Winnipeg, Manitoba, Canada R3E OW3

Abstract

The pathway for the biosynthesis of new cardiolipin was investigated in the isolated perfused intact rat heart. Isolated rat hearts were perfused in the Langendorff mode for up to 60 min with Krebs-Henseleit buffer containing 0.1 microM [U-14C]glycerol. Analysis of radioactivity incorporated into phospholipids in the organic phase revealed an increase in radioactivity incorporated into phosphatidylglycerol, cardiolipin and other phospholipids with time of perfusion. This was associated with a loss of radioactivity from phosphatidic acid. In contrast, perfusion of hearts for up to 60 min with 0.1 mM [1,(3)-3H]glycerol in the perfusate revealed an increased radioactivity associated with phosphatidic acid as well as cardiolipin, phosphatidylglycerol and other phospholipids. Perfusion of hearts for up to 60 min with [32P]Pi in the perfusate revealed a time-dependent increase in radioactivity associated with all phospholipids. Perfusion of hearts for up to 60 min with 0.1 microM or 0.1 mM glycerol in the perfusate did not affect the concentration of phosphatidic acid, cardiolipin or phosphatidylglycerol. To determine the rate-limiting step of cardiolipin biosynthesis, hearts were pulsed for 5 min with 0.1 microM [1,(3)-3H]glycerol and chased for up to 60 min with 0.1 microM glycerol in the perfusate. Radioactivity was maximum at the start of the chase in phosphatidic acid (and 1,2-diacylglycerol), and was subsequently chased into phosphatidylinositol, phosphatidylglycerol and cardiolipin (and other phospholipids). Significant radioactivity in phosphatidylglycerol phosphate was not detected. Radioactivity in CDP-sn-1,2-diacylglycerol remained constant throughout the chase. The activities of the enzymes of the Kennedy pathway for cardiolipin biosynthesis in the heart were determined. On the basis of continuous-pulse and pulse-chase labelling studies it is postulated that the cardiac polyglycerophospholipids phosphatidylglycerol and cardiolipin are actively synthesized from newly synthesized phosphatidic acid via the Kennedy pathway. In addition, the results suggest that the rate-limiting step of cardiolipin biosynthesis in the intact heart is probably the conversion of phosphatidic acid into CDP-sn-1,2-diacylglycerol.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3