Translocation of the Na+/H+ exchanger 1 (NHE1) in cardiomyocyte responses to insulin and energy-status signalling

Author:

Lawrence Scott P.1,Holman Geoffrey D.1,Koumanov Françoise1

Affiliation:

1. Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.

Abstract

The Na+/H+ exchanger NHE1 is a highly regulated membrane protein that is required for pH homoeostasis in cardiomyocytes. The activation of NHE1 leads to proton extrusion, which is essential for counteracting cellular acidity that occurs following increased metabolic activity or ischaemia. The activation of NHE1 intrinsic catalytic activity has been well characterized and established experimentally. However, we have examined in the present study whether a net translocation of NHE1 to the sarcolemma of cardiomyocytes may also be involved in the activation process. We have determined the distribution of NHE1 by means of immunofluorescence microscopy and cell-surface biotinylation. We have discovered changes in the distribution of NHE1 that occur when cardiomyocytes are stimulated with insulin that are PI3K (phosphoinositide 3-kinase)-dependent. Translocation of NHE1 also occurs when cardiomyocytes are challenged by hypoxia, or inhibition of mitochondrial oxidative metabolism or electrically induced contraction, but these responses occur through a PI3K-independent process. As the proposed additional level of control of NHE1 through translocation was unexpected, we have compared this process with the well-established translocation of the glucose transporter GLUT4. In immunofluorescence microscopy comparisons, the translocation of NHE1 and GLUT4 to the sarcolemma that occur in response to insulin appear to be very similar. However, in basal unstimulated cells the two proteins are mainly located, with the exception of some co-localization in the perinuclear region, in distinct subcellular compartments. We propose that the mechanisms of translocation of NHE1 and GLUT4 are linked such that they provide spatially and temporally co-ordinated responses to cardiac challenges that necessitate re-adjustments in glucose transport, glucose metabolism and cell pH.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Insulin may promote SARS-CoV-2 cell entry and replication in diabetes patients;Medical Hypotheses;2023-01

2. The protective effects of procyanidin supplementation on PM2.5-induced acute cardiac injury in rats;Environmental Science and Pollution Research;2022-09-10

3. Metformin: Expanding the Scope of Application—Starting Earlier than Yesterday, Canceling Later;International Journal of Molecular Sciences;2022-02-21

4. Diabetic cardiomyopathy;Revista Clínica Española (English Edition);2022-02

5. Miocardiopatía diabética;Revista Clínica Española;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3