Affiliation:
1. School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K.
Abstract
Cell-free synthetic biochemistry aims to engineer chemical biology by exploiting biosynthetic dexterity outside of the constraints of a living cell. One particular use is for making natural products, where cell-free systems have initially demonstrated feasibility in the biosynthesis of a range of complex natural products classes. This has shown key advantages over total synthesis, such as increased yield, enhanced regioselectivity, use of reduced temperatures and less reaction steps. Uniquely, cell-free synthetic biochemistry represents a new area that seeks to advance upon these efforts and is particularly useful for defining novel synthetic pathways to replace natural routes and optimising the production of complex natural product targets from low-cost precursors. Key challenges and opportunities will include finding solutions to scaled-up cell-free biosynthesis, as well as the targeting of high value and toxic natural products that remain challenging to make either through whole-cell biotransformation platforms or total synthesis routes. Although underexplored, cell-free synthetic biochemistry could also be used to develop ‘non-natural’ natural products or so-called xenobiotics for novel antibiotics and drugs, which can be difficult to engineer directly within a living cell.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献