Reconstitution of purified, active and malonyl-CoA-sensitive rat liver carnitine palmitoyltransferase I: relationship between membrane environment and malonyl-CoA sensitivity

Author:

MCGARRY J. Denis12,BROWN Nicholas F.1

Affiliation:

1. Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75235-9135, U.S.A.

2. Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75235-9135, U.S.A.

Abstract

Carnitine palmitoyltransferase I (CPT I) catalyses the initial step of fatty acid import into the mitochondrial matrix, the site of β-oxidation, and its inhibition by malonyl-CoA is a primary control point for this process. The enzyme exists in at least two isoforms, denoted L-CPT I (liver type) and M-CPT I (skeletal-muscle type), which differ in their kinetic characteristics and tissue distributions. A property apparently unique to L-CPT I is that its sensitivity to malonyl-CoA decreases in vivo with fasting or experimentally induced diabetes. The mechanism of this important regulatory effect is unknown and has aroused much interest. CPT I is an integral outer-membrane protein and displays little activity after removal from the membrane by detergents, precluding direct purification of active protein by conventional means. Here we describe the expression of a 6×His-tagged rat L-CPT I in Pichia pastoris and purification of the detergent-solubilized enzyme in milligram quantities. Reconstitution of the purified product into a liposomal environment yielded a 200-400-fold increase in enzymic activity and restored malonyl-CoA sensitivity. This is the first time that a CPT I protein has been available for study in a form that is both pure and active. Comparison of the kinetic properties of the reconstituted material with those of L-CPT I as it exists in mitochondria prepared from yeast over-expressing the enzyme and in livers from fed or fasted rats permitted novel insight into several aspects of the enzyme's behaviour. The malonyl-CoA response of the liposomal enzyme was found to be greater when the reconstitution procedure was carried out at 22 °C compared with 4 °C (IC50 ≈ 11 μM versus 30 μM, respectively). When the sensitivities of L-CPT I in each of the different environments were compared, they were found to decrease in the following order: fed liver > fasted liver≈ liposomes prepared at 22 °C≈ P. pastoris mitochondria > liposomes prepared at 4 °C. In addition, pre-treatment of L-CPT I liposomes with the membrane-fluidizing reagent benzyl alcohol caused densensitization to the inhibitor. In contrast with the variable response to malonyl-CoA, the liposomal L-CPT I displayed a pH profile and kinetics with regard to the carnitine and acyl-CoA substrates similar to those of the enzyme in fed or fasted liver mitochondria. However, despite a normal sensitivity to malonyl-CoA, L-CPT I in P. pastoris mitochondria displayed aberrant behaviour with regard to each of these other parameters. The kinetic data establish several novel points. First, even after stringent purification procedures in the presence of detergent, recombinant L-CPT I could be reconstituted in active, malonyl-CoA sensitive form. Second, the kinetics of the reconstituted, 6×His-tagged L-CPT I with regard to substrate and pH responses were similar to what is observed with rat liver mitochondria (whereas in P. pastoris mitochondria the enzyme behaved anomalously), confirming that the purified preparation is a suitable model for studying the functional properties of the enzyme. Third, wide variation in the response to the inhibitor, malonyl-CoA, was observed depending only on the enzyme's membrane environment and independent of interaction with other proteins. In particular, the fluidity of the membrane had a direct influence on this parameter. These observations may help to explain the mechanism of the physiological changes in the properties of L-CPT I that occur in vivo and are consistent with the current topographical model of the enzyme.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3