Author:
Brocklehurst K,Dixon H B F
Abstract
1. Reactions of enzymes with site-specific reagents may involve intermediate adsorptive complexes formed by parallel reactions in several protonic states. Accordingly, a profile of the apparent second-order rate constant for the modification reaction (Kobs., the observed rate constant under conditions where the reagent concentration is low enough for the reaction to be first-order in reagent) against pH can, in general, reflect free-reactant-state molecular pKa values only if a quasi-equilibrium condition exists around the reactive protonic state (EHR) of the adsorptive complex. 2. Usually the condition for quasi-equilibrium is expressed in terms of the rate constants around EHR: (formula: see text) i.e. k mod. less than k-2. This often cannot be assessed directly, particularly if it is not possible to determine kmod. 3. It is shown that kmod. must be much less than k-2, however, if kobs. (the pH-independent value of kobs.) less than k+2. 4. Since probable values of k+2 greater than 10(6)M-1.S-1 and since values of kobs. for many modification reactions less than 10(6)M-1.S-1, the equilibrium assumption should be valid, and kinetic study of such reactions should provide reactant-state pKa values. 5. This may not apply to catalyses, because for them the value of kcat./Km may exceed 5 X 10(5)M-1.S-1. 6. The conditions under which the formation of an intermediate complex by parallel pathways may come to quasi-equilibrium are discussed in the Appendix.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献