Ca2+ stabilizes the semiquinone radical of pyrroloquinoline quinone

Author:

SATO Akihiro1,TAKAGI Kazuyoshi1,KANO Kenji1,KATO Nobuo1,DUINE Johannis A.1,IKEDA Tokuji1

Affiliation:

1. Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan

Abstract

Spectroelectrochemical studies were performed on the interaction between Ca2+ and pyrroloquinoline quinone (PQQ) in soluble glucose dehydrogenase (sGDH) and in the free state by applying a mediated continuous-flow column electrolytic spectroelectrochemical technique. The enzyme forms used were holo-sGDH (the holo-form of sGDH from Acinetobacter calcoaceticus) and an incompletely reconstituted form of this, holo-X, in which the PQQ-activating Ca2+ is lacking. The spectroelectrochemical and ESR data clearly demonstrated the generation of the semiquinone radical of PQQ in holo-sGDH and in the free state in the presence of Ca2+. In contrast, in the absence of Ca2+ no semiquinone was observed, either for PQQ in the free state (at pH7.0) or in the enzyme (holo-X). Incorporation of Ca2+ into the active site of holo-X, yielding holo-sGDH, caused not only stabilization of the semiquinone form of PQQ but also a negative shift (of 26.5mV) of the two-electron redox potential, indicating that the effect of Ca2+ is stronger on the oxidized than on the reduced PQQ. Combining these data with the observations on the kinetic and chemical mechanisms, it was concluded that the strong stimulating effect of Ca2+ on the activity of sGDH can be attributed to facilitation of certain kinetic steps, and not to improvement of the thermodynamics of substrate oxidation. The consequences of this conclusion are discussed for the oxidative as well as for the reductive part of the reaction of sGDH.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3