Assay and properties of 25-hydroxyvitamin D3 23-hydroxylase. Evidence that 23,25-dihydroxyvitamin D3 is a major metabolite in 1,25-dihydroxyvitamin D3-treated or fasted guinea pigs

Author:

Pedersen J I1,Hagenfeldt Y2,Björkhem I2

Affiliation:

1. Institute for Nutrition Research, School of Medicine, University of Oslo, P.O. Box 1046, Blindern, 0316 Oslo 3, Norway

2. Department of Clinical Chemistry and Research Center, Karolinska Institute, Huddinge University Hospital, S-141 86-Huddinge, Sweden

Abstract

Incubation of 25-hydroxyvitamin D3 with kidney cortex mitochondria from 1,25-dihydroxyvitamin D3-treated guinea pigs resulted in the formation of 23,25-dihydroxyvitamin D3 as the major product. The identity of the product was verified by g.c.-m.s. and quantification was performed by h.p.l.c. The rates of the reaction were in the range 1.0-1.8 pmol/min per mg of mitochondrial protein (at 37 degrees C), which were 5-10 times the rates of formation of 24,25-dihydroxyvitamin D3. In mitochondrial preparations from untreated guinea pigs, the rate of 23-hydroxylation was below detection limit (0.02 pmol/min per mg of mitochondrial protein). Fasting the animals for 24 h induced the 23-hydroxylase almost as efficiently as treatment with 1,25-dihydroxyvitamin D3, with a concomitant depression of the 1 alpha-hydroxylase. The 23-hydroxylase reaction required oxidizable substrate, was decreased by low O2 partial pressures and inhibited by CO or the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone. It was stimulated by the respiratory-chain inhibitors rotenone, antimycin A and KCN. These results indicate that the guinea-pig renal mitochondrial 23-hydroxylase is a cytochrome P-450 and that the reducing equivalents are primarily supplied by NADPH via the energy-dependent transhydrogenase.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3