Sulphide Impairment of Substrate Oxidation in Rat Colonocytes: A Biochemical Basis for Ulcerative Colitis?

Author:

Roediger W. E. W.1,Duncan A.1,Kapaniris O.1,Millard S.1

Affiliation:

1. Cell Physiology Laboratory of the University of Adelaide, Department of Surgery, The Queen Elizabeth Hospital, Adelaide, South Australia, Australia

Abstract

1. Isolated colonic epithelial cells of the rat were incubated for 40 min with [6-14C]glucose and n-[1-14C]batyrate in the presence of 0.1-2.0 mmol/l NaHS, a concentration range found in the human colon. Metabolic products, 14CO2, acetoacetate, β-hydroxybutyrate and lactate, were measured and injury to cells was judged by diminished production of metabolites. 2. Oxidation of n-butyrate to CO2 and acetoacetate was reduced at 0.1 and 0.5 mmol/l NaHS, whereas glucose oxidation remained unimpaired. At 1.0-2.0 mmol/l NaHS, n-butyrate and glucose oxidation were dose-dependently reduced at the same rate. 3. To bypass short-chain acyl-CoA dehydrogenase activity necessary for butyrate oxidation, ketogenesis from crotonate was measured in the presence of 1.0 mmol/l NaHS. Suppression by sulphide of ketogenesis from crotonate (−10.5 + 6.1%) compared with control conditions was not significant, whereas suppression of ketogenesis from n-butyrate (−36.00 + 5.14%) was signficant (P = <0.01). Inhibition of FAD-linked oxidation was more affected by NaHS than was NAD-linked oxidation. 4. L-Methionine (5.0 mmol/l) significantly redressed the impaired β-oxidation induced by NaHS. Methionine equally improved CO2 and ketone body production, suggesting a global reversal of the action of sulphide. 5. Sulphide-induced oxidative changes closely mirror the impairment of β-oxidation observed in colonocytes of patients with ulcerative colitis. A hypothesis for the disease process of ulcerative colitis is that sulphides may form persulphides with butyryl-CoA, which would inhibit cellular short-chain acyl-CoA dehydrogenase and β-oxidation to induce an energy-deficiency state in colonocytes and mucosal inflammation.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3