Ferredoxin 1 regulates granulosa cell apoptosis and autophagy in polycystic ovary syndrome

Author:

Xing Jinshan1,Qiao Gan2,Luo Xin2,Liu Shuang3,Chen Shaokun4,Ye Geng2,Zhang Chunxiang5,Yi Jingyan6ORCID

Affiliation:

1. 1Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China

2. 2Department of Pharmacology, School of Pharmacy, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, Sichuan, China

3. 3Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China

4. 4Department of Morphological Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan, China

5. 5Nucleic Acid Medicine of Luzhou Key Laboratory, Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, China

6. 6Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Nucleic Acid Medicine of Luzhou Key Laboratory, Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, China

Abstract

Abstract Polycystic ovary syndrome (PCOS), a common reproductive endocrine disorder in women of reproductive age, causes anovulatory infertility. Increased apoptosis of granulosa cells has been identified as one of the key factors contributing to abnormal follicular development. Ferredoxin 1 (FDX1) encodes a small ferredoxin that is involved in the reduction in mitochondrial cytochromes and the synthesis of various steroid hormones and has the potential to influence the function of granulosa cells. In the present study, we aimed to determine the relationship between FDX1 and follicular granulosa cell function. To this end, we investigated the difference between FDX1 expression in the granulosa cells of 50 patients with PCOS and that of the controls. Furthermore, we sought to elucidate the role and mechanism of FDX1 in PCOS granulosa cells by establishing a mouse PCOS model with dehydroepiandrosterone and KGN (a steroidogenic human granulosa cell-like tumor cell line). The results indicated significant up-regulation of FDX1 in the granulosa cells after androgen stimulation. Knockdown of FDX1 promoted the proliferation of KGN and inhibited apoptosis. Moreover, FDX1 could regulate autophagy by influencing the autophagy proteins ATG3 and ATG7. Our results demonstrated that FDX1 plays a critical role in female folliculogenesis by mediating apoptosis, autophagy, and proliferation. Therefore, FDX1 may be a potential prognostic factor for female infertility.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3